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Enhancement of coherent response by quenched disorder
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We investigate the effects of quenched disorder on the coherent response in a driven system of coupled
oscillators. In particular, the interplay between quenched noise and periodic driving is explored, with particular
attention to the possibility of resonance. The phase velocity is examined as the response of the system; revealed
is the enhancement of the fraction of oscillators locked to the periodic driving, displaying resonance behavior.

It is thus concluded that resonance behavior may also be induced by quenched disorder that does not have
time-dependent correlations.
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In recent years, thetochastic resonancé&R) has drawn  tion emerges. Such synchronization behavior may be ex-
much attention, which stands for the phenomena that thplored by measuring the order parameter
response of a system to a periodic driving force is enhanced
by an appropriate amount of noise rather than suppressed <’ > @
tems[4—6] are known to occur through the cooperative in-
terplay between the noise and the external driving force, and h & implies th f hronizati
require three ingredientgi) an energetic activation barrier; where nonzerd Implies the emergence of synchronization.
(i) a weak input such as periodic driving; afiid) a random It is known that the synchronization behavior of the system
. . . . i i ~(K=K.)B wi = iti-
noise[3]. In particular, the SR may be understood in terms ofS characterized b ~(K-K¢)” with f=1/2 near the criti

the matching of two time scales, the period of the drivingC@! coupling strengti.=2/g(0) [7]. The Kuramoto model

force, and the inverse of the Kramers hopping rate associatdfS been also extended by means of introducing a constant in
with the random noise. Note that the noise here usually ha®e argument of sine couplirig]. Such extended models are
time-dependent correlations. Namely, the correlation be!SC studied in Refl9], where the frequency locking in the
tween two noise forcesy and »; is given by (7 (t)7(t') system of Josephson arrays is investigated. .
=2T4;8(t-t'), whereT represents the noise strength. Here Meanwhile, when the external periodic driving comes into

; .. . e system, the synchronization behavior has been observed
naturally arises a question: how does the SR behavior depe%@ appear periodically10]. However, the possibility of the

[1-3]. Those SR phenomena observed in various real sys- A=

%E ¥

J

on such characteristics of the noise. In particular, one ma . ) .
ask whether such resonance behavior appears even for t sonance phenomena, which May occur via the cooperative
quenched noise without time-dependent correlations. n grplay between th_e extgrnal dnvmg and the quenchgd
To resolve this, we consider the system of coupled oscill01S€, has not been investigated. In_ this paper, we examine
lators described by the Imea_r response of the system, Wlth particular attention to
the possibility of the resonance behavior due to the quenched
_ K disorder.
¢ = wi- NE sin(¢; = ¢;) + I; cost, (1) We first investigate analytically the dynamics of the sys-
=1 tem governed by Eq1). The order parametekx defined in
whereg, represents the phase of ttk limit-cycle oscillator. ~ Ed. (2) allows us to reduce Ed1) into a single equation
The first termw; on the right-hand side denotes the intrinsic
frequency of theth oscillator, assumed to be distributed ac- ©=w-KAsing+1cosQt, 3
cording to the Gaussian distributiag(w) with zero mean
((w)=0) and correlationgw;w;)=D ;. Note that correlations whereA is to be determined by imposing self-consistency,
betweenw;'s are not time dependent but quenched in time, inand indices are suppressed for simplicity. Equati@nre-
sharp contrast with the usual thermal noise. The second terminds one of the single resistively shunted Josephson junc-
on the right-hand side describes the coupling between oscition under combined direct and alternating currents. It is well
lators, whereas the third term represents the external periodiknown that such a system can be locked to the external driv-
driving with the driving strength; chosen from a certain ing, which is characterized by the Shapiro si&f
distribution functionf(l). In the absence of the external driv-
ing (I;=0), Eq. (1) describes the well-known Kuramoto
model, where the synchronization phenomena have been in-
vestigated extensivelly7]. The scattered intrinsic frequency
or quenched noise; competes with the coupling strength _
in the system: when the coupling is strong enough to overwith n integer, wheree (=v) is the time-averaged phase
come the scatteredness of intrinsic frequencies, synchronizaelocity. Such mode-locking features suggest the ansatz

=n, (4)
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@ =@o+NQt+ X A, sin(pOt + ay) (5)
p-1

for the locked phase of the oscillator on thth step. The

external periodic driving in the system also leads us to ex-
pect periodic synchronizatiofl0], where the order param-

eterA is decomposed as

o

A=Ag+ X AgcogqQt+f,).
o=1

(6)

Inserting Eqs(5) and(6) into Eqg. (3), we obtain

oo

nQ + >, pQA, copQt + ap) — | cosQt
p=1
=w- K[A0+ > Aq coqqOt + ,Bq)}
1

X (H > Je,(Ar)>sind>, ()

r=1¢,=—»

where Jer(x) is the ¢,th Bessel function and®= ¢,
+32 Csas+(n+2L,s-)Ot. The integerds satisfying= st
=-n contribute to the dc component

o

nQ=w- KA0<H > 'J(r(Ar))sin@ +O(KA,), (8)
r=1 ¢,

where &)E(PO"'E:;lgsas and the prime in the summation

stands for the constrailtsfs=-n. This gives an estimation

of the dc driving strengthw corresponding to the integer

locking. The amplitudé\, and phasey, of the ac component
with frequencyp() can be determined from the equation

- PQA, cogpQt + ap) + 41 cospt

= KA0<H > Jq(Ar))sin( o+ PO+ fgas)
s=1

r=1 s
r

. KAO<H > J(r—(Ar)) sin( Qo= POL+ >, e;as)
=1

r=1 o
r

+ KA, cogpQt + ,Bp)<1_[ > 'Jgr(A,)>sin<T> 9)

r=1 fr

with integers ¢; and ¢, satisfying =Z;st;=p-n and
22 st.=—p—n, respectively. WheikA, is sufficiently small
compared with the driving amplitude, Eq9) with p=1
yields A; and a4 to the zeroth order irKAy: A;=1/Q and
a,=0. It is observed numerically that the dc componagt
of the order parameter is much larger than higher-otder

component$Ay,> A (€ =1)], which allows the expansion of

the locked phase to the zeroth orderkid,. This gives the
(locked phase of the oscillator on thah step as
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I
©=@o+nOt+ 9 sinQt + O(KAy/202), (10)
which yields the range of locked oscillators
o —nQ =KAy(- 1)"J,(1/Q)sin g+ O(KA;).  (11)
It implies that the oscillators in the range
nQ — KAJ,(1/Q)| < o < nQ + KA J,(11Q)] (12

display the locking behavidw /€ =n), with the higher-order
terms of O(KA;) neglected.

The quenched disordes and the driving amplitudé are
chosen from the distribution functiag(w) and f(l), respec-
tively, which yields the fractiom, of the oscillators locked to
the nth step

% NO+KA QI (1/0)]
I’n=f f(l)dIJ g(w)dw.
—0 NO-KAGJ,(1/0)]
For the Gaussian distributiog(w)=(1/\527TD)e“"2’2D and

the delta function onef(1)=(1/2)[8(1-19)+8(+1y)], the
fractionr, in Eq. (13) is given by

1{erf< nQ + Kéd_Jn<IJQ>|)
v2Dh

_ erf( nQ - K§£n<ldn>l)] |
V2D

(13

M=

(14)

where erfx) denotes the error function. To estimate the be-
havior of the fractiorr,, as the varianc® varies, we should
know the behavior of the dc componekg as a function of
the varianceD. Note that the self-consistency equation for
the order parameter gives the behaviorAgfonly near the
critical point. To obtaim\, in the whole range of the disorder
strength, we resort to numerical simulations and integrate
Eqg. (1) via Heun’'s method12] with the discrete time step
6t=0.01. While the equations of motion are integrated for
N;=8x 10* time steps, the data from the finst/2 steps are
discarded in measuring quantities of interest. The system size
N has been considered up k=20 000, so that no appre-
ciable size dependence is observed. The driving amplityide
in the distributionf(l) and the driving frequency) have
been chosen to blg=0.8 and()=1.0, 1.2, and 1.4, respec-
tively; the coupling strengtK has been set equal to unity for
convenience. We measure the order paramgtemnd obtain

the componen\, by taking the time average.

The dc componem is shown in the inset of Fig. 1 as a
function of the disorder streng, displaying the monotoni-
cally decreasing behavior. Using this, we compute the frac-
tionr,, of the oscillators that are locked to the first step since
r.; is most dominant over other componeptg ¢ = 2)]. Fig-
ure 1 displays the total fractiom+r_; for K=1.0,1,=0.8,
and 1=1.0,1.2,1.4 versus the disorder strend@h It is
found that the fraction first increases with which implies
that a larger number of oscillators tends to follow the driving
force as the quenched disorder becomes stronger. Remark-
ably as the disorder is increased further, the fraction reaches
the maximum and begins to decrease. For example, the op-
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FIG. 2. Total height;+h_; of the peak ab == in the prob-
ability distribution vs the disorder strengih Inset: the probability
distribution P(v) of the time-averaged phase velocityfor K=1.0,
10=0.8,02=1.0, andD=0.20.

FIG. 1. Total fractiorr+r_; of the oscillators locked to the first
step(n=+1) vs the disorder strength for K=1.0,1,=0.8, andQ
=1.0, 1.2, and 1.4. Inset: the dc componaptin the system of size
N=20 000 at various driving frequencies.

timal disorder strength is observed to Bg,~0.17 for Q  the other hand, peaks show up at the driving frequency, with
=1.0. Sych_ behavior of the fraction; is reminiscent .of the the height growing. The peak height, at the driving fre-
SR, which is known to occur through the cooperative inter-qyency may be regarded as a good indicator that describes
play between the external periodic driving force and the rangpe response of the system to the external driving.
dom noise. Note that in sharp contrast to the random noise in e numerically obtain the peak height, subtracting the
the conventional SR, the noise in the system governed by Eqackground noise given by the average of ten data points
(1) is quenched with no time-dependent correlations.yround the peak. Figure 2 displays the total heigf#h_,
Namely, here the quenched disorder enhances the cohergp;sys the disorder strengtd in the system of sizeN
response of the system. It is also shown that as the driving 0 000, with the driving frequency varied frod=1.0 to
frequency(} is raised, the fractiom,, of locked oscillators (-1 4. We have considered the system size upNto
diminishes while the optimal strengBy, shifts to larger val- - 40 000, where no appreciable size dependence is observed.
ues. These tendencies reflect that the oscillators are reluctafife total height is found to first increase with the disorder
to follow the driving, which changes too fast, and that thestrengthD and reaches its maximum at a finite value of the
disorder strengtid should be enlarged to fit the high driving gjisorder, displaying quite a similar feature to the fractigp
frequency. Another point is that the fractiop of the oscil-  [see Fig. 1. The enhancement of the height indicates that the
lators locked to th@=0 step does not exhibit such resonanceyyenched disorder actually increases the number of the os-
behavior; it rather displays the monotonic decreasing behavsijators locked to the external driving. To our knowledge,
ior, which is quite similar to that of the dc componeXg of  guch an enhancement induced by the quenched disorder
the phase order parameter. Higher fractions rier2 also \ithout time-dependent correlations has not been addressed
show the resonance behavior, although the magnitude is tQgsfore. It is observed in Fig. 2 that the increase of the driving
small to be clearly discriminated. We have also mvesUgateqlrequenCy tends to suppress the total height, and to shift the
the role of coupling on the enhancement of coherent regpntimal disorder strength to larger values, which may be re-
sponse. As the coupling strendthdecreases, such resonance|ated to the intrinsic time scale of the system. Note that the
behavior is found to be suppressed. conventional SR phenomena have been known to occur
To confirm such resonance behavior, we now perform nuyhen the Kramers hopping rate and the external driving fre-
merical simulations. We obtain the probability distribution guency match each other. To see such time scale matching in
P(v) for the time-averaged phase velocityunder the same  the quenched-noise-induced resonance, we investigate the re-
conditions as before, varying the disorder strenBthThe  |axation dynamics of the system, and probe the time evolu-

data are then averaged over 100 independent sgisjofThe  tion of the renormalized synchronization order parameter
inset of Fig. 2 displays the probability distribution fé)

=1.0 andD=0.20, where three sharp peaks appeas =0 At = Alt) —Aeq (15)
(not fully shown and #). The two peaks at the driving A0) - Agq’

frequency(+{}) manifest that some fraction of the oscillators o

follow the external driving force, locked to the latter. Note yv_hgreAeq andA(0) _represent the eqU|I|_br|um value and the

that such peaks may also appear at higher frequemgies initial one, respectively. The renormalized order parameter

(In|=2), although they are too small to be manifestly shown.A(t) is thus expected to decay from uni§=0) to zero(t
In the absence of the quenched disor@@r=0), those —«): A(t) ~exp(-t/7).

peaks ab=+() do not emerge, and only the delta peak ap- Figure 3 shows the inverse relaxation tiré versus the

pears ab=0. As the disorder strength is increased further, ordisorder strengtid for 1,=0.8 and(2=1.0, 1.2, and 1.4. The
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0.8 - - - - - ment of the response is maximized. For example, for
=1.0, 1.2, and 1.4, the crossing points leadCig~0.19,
0.21, and 0.22, respectively, which are consistent with the
----- 1 values obtained both analytically and numericdlige Figs.
""" 1 and 2. We thus conclude that quenched disorder may also
enhance the coherent response of the system via the mecha-
nism of the time-scale matching.
In summary, we have explored the effects of quenched
. disorder on the coherent response in the driven system of
Ba coupled oscillators. We have investigated the interplay be-
0, e tween quenched disorder and external periodic driving, with
0.0 . . . L , particular attention to the possibility of resonance behavior.
004 008 012 0.6 0.2 024 0.28 The phase velocity is probed as the response of the system;
D revealed is the enhancement of the fraction of the oscillators
locked to the external driving, exhibiting resonance behavior.
FIG. 3. Inverse relaxation time™ vs the disorder streng®.  This provides an observation of the resonance behavior in-
The crossing points with the lines 1.0¢21.2/2m, and 1.4/Zr  g,ced by quenched disorder. In a biological system such as
yield the values oD, at the corresponding driving frequency. gy nchronous fireflies, different firing frequencies of fireflies
o ) i may be regarded as the quenched disorder. Our results are
intrinsic time scaler of the system is observed to increase gpplicable to expect those different firing frequenciis

indefinitely as the disorder strengthapproaches the critical giead of same onpsnay enhance the coherent response of
value D beyond which synchronization disappears. Thege system.

horizontal lines in Fig. 3 describe the time-scale matching
conditions at various driving frequencies: the valueDoft We thank M.Y. Choi, H. Park, and B.J. Kim for useful
the crossing point corresponds g, at which the enhance- discussions.
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