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We investigate the effects of quenched disorder on the coherent response in a driven system of coupled
oscillators. In particular, the interplay between quenched noise and periodic driving is explored, with particular
attention to the possibility of resonance. The phase velocity is examined as the response of the system; revealed
is the enhancement of the fraction of oscillators locked to the periodic driving, displaying resonance behavior.
It is thus concluded that resonance behavior may also be induced by quenched disorder that does not have
time-dependent correlations.
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In recent years, thestochastic resonancesSRd has drawn
much attention, which stands for the phenomena that the
response of a system to a periodic driving force is enhanced
by an appropriate amount of noise rather than suppressed
f1–3g. Those SR phenomena observed in various real sys-
temsf4–6g are known to occur through the cooperative in-
terplay between the noise and the external driving force, and
require three ingredients:sid an energetic activation barrier;
sii d a weak input such as periodic driving; andsiii d a random
noisef3g. In particular, the SR may be understood in terms of
the matching of two time scales, the period of the driving
force, and the inverse of the Kramers hopping rate associated
with the random noise. Note that the noise here usually has
time-dependent correlations. Namely, the correlation be-
tween two noise forceshi and h j is given by khistdh jst8dl
=2Tdi jdst− t8d, whereT represents the noise strength. Here
naturally arises a question: how does the SR behavior depend
on such characteristics of the noise. In particular, one may
ask whether such resonance behavior appears even for the
quenched noise without time-dependent correlations.

To resolve this, we consider the system of coupled oscil-
lators described by

ẇi = vi −
K

N
o
j=1

N

sinswi − w jd + I i cosVt, s1d

wherewi represents the phase of theith limit-cycle oscillator.
The first termvi on the right-hand side denotes the intrinsic
frequency of theith oscillator, assumed to be distributed ac-
cording to the Gaussian distributiongsvd with zero mean
skvl=0d and correlationskviv jl=Ddi j . Note that correlations
betweenvi’s are not time dependent but quenched in time, in
sharp contrast with the usual thermal noise. The second term
on the right-hand side describes the coupling between oscil-
lators, whereas the third term represents the external periodic
driving with the driving strengthI i chosen from a certain
distribution functionfsId. In the absence of the external driv-
ing sI i =0d, Eq. s1d describes the well-known Kuramoto
model, where the synchronization phenomena have been in-
vestigated extensivelyf7g. The scattered intrinsic frequency
or quenched noisevi competes with the coupling strengthK
in the system: when the coupling is strong enough to over-
come the scatteredness of intrinsic frequencies, synchroniza-

tion emerges. Such synchronization behavior may be ex-
plored by measuring the order parameter

D ;KU 1

N
o

j

eiw jUL , s2d

where nonzeroD implies the emergence of synchronization.
It is known that the synchronization behavior of the system
is characterized byD,sK−Kcdb with b=1/2 near the criti-
cal coupling strengthKc=2/pgs0d f7g. The Kuramoto model
has been also extended by means of introducing a constant in
the argument of sine couplingf8g. Such extended models are
also studied in Ref.f9g, where the frequency locking in the
system of Josephson arrays is investigated.

Meanwhile, when the external periodic driving comes into
the system, the synchronization behavior has been observed
to appear periodicallyf10g. However, the possibility of the
resonance phenomena, which may occur via the cooperative
interplay between the external driving and the quenched
noise, has not been investigated. In this paper, we examine
the linear response of the system, with particular attention to
the possibility of the resonance behavior due to the quenched
disorder.

We first investigate analytically the dynamics of the sys-
tem governed by Eq.s1d. The order parameterD defined in
Eq. s2d allows us to reduce Eq.s1d into a single equation

ẇ = v − KD sinw + I cosVt, s3d

whereD is to be determined by imposing self-consistency,
and indices are suppressed for simplicity. Equations3d re-
minds one of the single resistively shunted Josephson junc-
tion under combined direct and alternating currents. It is well
known that such a system can be locked to the external driv-
ing, which is characterized by the Shapiro stepf11g

w̄̇

V
= n, s4d

with n integer, wherew̄̇ s;vd is the time-averaged phase
velocity. Such mode-locking features suggest the ansatz
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w = w0 + nVt + o
p=1

`

Ap sinspVt + apd s5d

for the locked phase of the oscillator on thenth step. The
external periodic driving in the system also leads us to ex-
pect periodic synchronizationf10g, where the order param-
eterD is decomposed as

D = D0 + o
q=1

`

Dq cossqVt + bqd. s6d

Inserting Eqs.s5d and s6d into Eq. s3d, we obtain

nV + o
p=1

`

pVAq cosspVt + apd − I cosVt

= v − KFD0 + o
q=1

`

Dq cossqVt + bqdG
3 Sp

r=1

`

o
,r=−`

`

J,r
sArdDsinF, s7d

where J,r
sxd is the ,rth Bessel function andF;w0

+os=1
` ,sas+sn+os=1

` s,sdVt. The integers,s satisfyingoss,s

=−n contribute to the dc component inF

nV = v − KD0Sp
r=1

`

o
,r

8J,r
sArdDsin F̃ + OsKD1d, s8d

where F̃;w0+os=1
` ,sas and the prime in the summation

stands for the constraintoss,s=−n. This gives an estimation
of the dc driving strengthv corresponding to the integer
locking. The amplitudeAp and phaseap of the ac component
with frequencypV can be determined from the equation

− pVAp cosspVt + apd + dp,1I cospVt

= KD0Sp
r=1

`

o
,r

+

J,r
+sArdDsinSw0 + pVt + o

s=1

`

,s
+asD

+ KD0Sp
r=1

`

o
,r

−

J,r
−sArdDsinSw0 − pVt + o

s=1

`

,s
−asD

+ KDp cosspVt + bpdSp
r=1

`

o
,r

8J,r
sArdDsin F̃ s9d

with integers ,r
+ and ,r

− satisfying os=1
` s,s

+=p−n and
os=1

` s,s
−=−p−n, respectively. WhenKD0 is sufficiently small

compared with the driving amplitude, Eq.s9d with p=1
yields A1 and a1 to the zeroth order inKD0: A1= I /V and
a1=0. It is observed numerically that the dc componentD0
of the order parameter is much larger than higher-ordersacd
componentsfD0@D,s,ù1dg, which allows the expansion of
the locked phase to the zeroth order inKD0. This gives the
slockedd phase of the oscillator on thenth step as

w = w0 + nVt +
I

V
sinVt + OsKD0I/2V2d, s10d

which yields the range of locked oscillators

v − nV = KD0s− 1dnJnsI/Vdsinf0 + OsKD1d. s11d

It implies that the oscillators in the range

nV − KD0uJnsI/Vdu ø v ø nV + KD0uJnsI/Vdu s12d

display the locking behaviorsv /V=nd, with the higher-order
terms ofOsKD1d neglected.

The quenched disorderv and the driving amplitudeI are
chosen from the distribution functiongsvd and fsId, respec-
tively, which yields the fractionrn of the oscillators locked to
the nth step

rn =E
−`

`

fsIddIE
nV−KD0uJnsI/Vdu

nV+KD0uJnsI/Vdu

gsvddv. s13d

For the Gaussian distributiongsvd=s1/Î2pDde−v2/2D and
the delta function onefsId=s1/2dfdsI − I0d+dsI + I0dg, the
fraction rn in Eq. s13d is given by

rn =
1

2FerfSnV + KD0uJnsI0/Vdu
Î2D

D
− erfSnV − KD0uJnsI0/Vdu

Î2D
DG , s14d

where erfsxd denotes the error function. To estimate the be-
havior of the fractionrn as the varianceD varies, we should
know the behavior of the dc componentD0 as a function of
the varianceD. Note that the self-consistency equation for
the order parameter gives the behavior ofD0 only near the
critical point. To obtainD0 in the whole range of the disorder
strength, we resort to numerical simulations and integrate
Eq. s1d via Heun’s methodf12g with the discrete time step
dt=0.01. While the equations of motion are integrated for
Nt=83104 time steps, the data from the firstNt /2 steps are
discarded in measuring quantities of interest. The system size
N has been considered up toN=20 000, so that no appre-
ciable size dependence is observed. The driving amplitudeI0
in the distribution fsId and the driving frequencyV have
been chosen to beI0=0.8 andV=1.0, 1.2, and 1.4, respec-
tively; the coupling strengthK has been set equal to unity for
convenience. We measure the order parameterD, and obtain
the componentD0 by taking the time average.

The dc componentD0 is shown in the inset of Fig. 1 as a
function of the disorder strengthD, displaying the monotoni-
cally decreasing behavior. Using this, we compute the frac-
tion r±1 of the oscillators that are locked to the first step since
r±1 is most dominant over other componentsfr,s,ù2dg. Fig-
ure 1 displays the total fractionr1+r−1 for K=1.0, I0=0.8,
and V=1.0,1.2,1.4 versus the disorder strengthD. It is
found that the fraction first increases withD, which implies
that a larger number of oscillators tends to follow the driving
force as the quenched disorder becomes stronger. Remark-
ably as the disorder is increased further, the fraction reaches
the maximum and begins to decrease. For example, the op-
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timal disorder strength is observed to beDm<0.17 for V
=1.0. Such behavior of the fractionr±1 is reminiscent of the
SR, which is known to occur through the cooperative inter-
play between the external periodic driving force and the ran-
dom noise. Note that in sharp contrast to the random noise in
the conventional SR, the noise in the system governed by Eq.
s1d is quenched with no time-dependent correlations.
Namely, here the quenched disorder enhances the coherent
response of the system. It is also shown that as the driving
frequencyV is raised, the fractionr±1 of locked oscillators
diminishes while the optimal strengthDm shifts to larger val-
ues. These tendencies reflect that the oscillators are reluctant
to follow the driving, which changes too fast, and that the
disorder strengthD should be enlarged to fit the high driving
frequency. Another point is that the fractionr0 of the oscil-
lators locked to then=0 step does not exhibit such resonance
behavior; it rather displays the monotonic decreasing behav-
ior, which is quite similar to that of the dc componentD0 of
the phase order parameter. Higher fractions fornù2 also
show the resonance behavior, although the magnitude is too
small to be clearly discriminated. We have also investigated
the role of coupling on the enhancement of coherent re-
sponse. As the coupling strengthK decreases, such resonance
behavior is found to be suppressed.

To confirm such resonance behavior, we now perform nu-
merical simulations. We obtain the probability distribution
Psvd for the time-averaged phase velocityv under the same
conditions as before, varying the disorder strengthD. The
data are then averaged over 100 independent sets ofhvij. The
inset of Fig. 2 displays the probability distribution forV
=1.0 andD=0.20, where three sharp peaks appear atv=0
snot fully shownd and ±V. The two peaks at the driving
frequencys±Vd manifest that some fraction of the oscillators
follow the external driving force, locked to the latter. Note
that such peaks may also appear at higher frequenciesnV
sunuù2d, although they are too small to be manifestly shown.

In the absence of the quenched disordersD=0d, those
peaks atv= ±V do not emerge, and only the delta peak ap-
pears atv=0. As the disorder strength is increased further, on

the other hand, peaks show up at the driving frequency, with
the height growing. The peak heighth±1 at the driving fre-
quency may be regarded as a good indicator that describes
the response of the system to the external driving.

We numerically obtain the peak height, subtracting the
background noise given by the average of ten data points
around the peak. Figure 2 displays the total heighth1+h−1
versus the disorder strengthD in the system of sizeN
=20 000, with the driving frequency varied fromV=1.0 to
V=1.4. We have considered the system size up toN
=40 000, where no appreciable size dependence is observed.
The total height is found to first increase with the disorder
strengthD and reaches its maximum at a finite value of the
disorder, displaying quite a similar feature to the fractionr±1
fsee Fig. 1g. The enhancement of the height indicates that the
quenched disorder actually increases the number of the os-
cillators locked to the external driving. To our knowledge,
such an enhancement induced by the quenched disorder
without time-dependent correlations has not been addressed
before. It is observed in Fig. 2 that the increase of the driving
frequency tends to suppress the total height, and to shift the
optimal disorder strength to larger values, which may be re-
lated to the intrinsic time scale of the system. Note that the
conventional SR phenomena have been known to occur
when the Kramers hopping rate and the external driving fre-
quency match each other. To see such time scale matching in
the quenched-noise-induced resonance, we investigate the re-
laxation dynamics of the system, and probe the time evolu-
tion of the renormalized synchronization order parameter

D̃std ;
Dstd − Deq

Ds0d − Deq
, s15d

whereDeq andDs0d represent the equilibrium value and the
initial one, respectively. The renormalized order parameter

D̃std is thus expected to decay from unityst=0d to zero st
→`d: D̃std,exps−t /td.

Figure 3 shows the inverse relaxation timet−1 versus the
disorder strengthD for I0=0.8 andV=1.0, 1.2, and 1.4. The

FIG. 1. Total fractionr1+r−1 of the oscillators locked to the first
stepsn= ±1d vs the disorder strengthD for K=1.0, I0=0.8, andV
=1.0, 1.2, and 1.4. Inset: the dc componentD0 in the system of size
N=20 000 at various driving frequencies.

FIG. 2. Total heighth1+h−1 of the peak atv= ±V in the prob-
ability distribution vs the disorder strengthD. Inset: the probability
distributionPsvd of the time-averaged phase velocityv for K=1.0,
I0=0.8, V=1.0, andD=0.20.
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intrinsic time scalet of the system is observed to increase
indefinitely as the disorder strengthD approaches the critical
value Dc beyond which synchronization disappears. The
horizontal lines in Fig. 3 describe the time-scale matching
conditions at various driving frequencies: the value ofD at
the crossing point corresponds toDm at which the enhance-

ment of the response is maximized. For example, forV
=1.0, 1.2, and 1.4, the crossing points lead toDm<0.19,
0.21, and 0.22, respectively, which are consistent with the
values obtained both analytically and numericallyfsee Figs.
1 and 2g. We thus conclude that quenched disorder may also
enhance the coherent response of the system via the mecha-
nism of the time-scale matching.

In summary, we have explored the effects of quenched
disorder on the coherent response in the driven system of
coupled oscillators. We have investigated the interplay be-
tween quenched disorder and external periodic driving, with
particular attention to the possibility of resonance behavior.
The phase velocity is probed as the response of the system;
revealed is the enhancement of the fraction of the oscillators
locked to the external driving, exhibiting resonance behavior.
This provides an observation of the resonance behavior in-
duced by quenched disorder. In a biological system such as
synchronous fireflies, different firing frequencies of fireflies
may be regarded as the quenched disorder. Our results are
applicable to expect those different firing frequenciessin-
stead of same onesd may enhance the coherent response of
the system.
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